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• Amortization refers to the ability of a conditional distribution approximation to condition on arbitrary 

instances of the conditioning variable, rather than being specialized to a particular instance.

What is Amortized Inference?

Too abstract!

• Amortization refers to the ability of a conditional distribution approximation to condition on arbitrary 

instances of the conditioning variable, rather than being specialized to a particular instance.
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Example: Planning for a trip

Traditional trip planning With a smart travel assistant

• Starts from scratch every time.

• Time-consuming and complex.

• Each trip planned individually.

• Learns from past trips.

• Quick, personalized planning.

• Efficient use of past data for new trips.
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• Simulator-based model 𝒫! = {ℙ": 𝜃 ∈ Θ}.

Ø A climate simulator: given conditions (temperature, humidity, and wind speed, etc.), simulate states and 

behaviors of the atmosphere, oceans, or land.

Ø Input: parameters. Output: simulated data.

• ℙ" is intractable, but simulating data 𝐱#:% = 𝐱#, … , 𝐱% ~ ℙ" is straightforward.

Ø Likelihood function is unknown.

• Observed data 𝐱⋆ ⊆ ℝ' denoted by empirical distribution ℚ.

Ø Real-world states and behaviors of the atmosphere, oceans, or land.

• Aim: Estimate 𝜃⋆ given data 𝐱⋆ such that ℙ"⋆ = ℚ.

Example: Inference for simulators
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Traditional inference method: Approximate Bayesian Computation (ABC)

Example: Inference for simulators

Repeat until m samples accepted:

1. Sample 1𝜃 from prior 𝑝 𝜃 .

2. Simulate data 𝐱 ~ ℙ(" .

3. If 𝑑 𝐱, 𝐱⋆ < 𝜖, accept 1𝜃.
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Traditional inference method: Approximate Bayesian Computation (ABC)

Example: Inference for simulators

Assume 𝐱⋆= 2, 𝜃⋆ = 1, 𝜖 = 0.05.

1st round:

1. Sample from prior !𝜃 = 1.05.

2. Simulate data 𝐱 = 2.03.

3. 𝑑 𝐱, 𝐱⋆ = 0.03 < 𝜖, accept !𝜃.

2nd round:

1. Sample from prior !𝜃 = 1.4.

2. Simulate data 𝐱 = 2.97.

3. 𝑑 𝐱, 𝐱⋆ = 0.97 > 𝜖, reject !𝜃.

…

What about a new piece of observed 
data 𝐱⋆= 2.001?
1st round: …

2nd round: …

…

Not efficient!
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Amortized inference method: we can build a direct mapping -> Neural Posterior Estimation (NPE)

Example: Inference for simulators

Training a neural network:

1. Sample { 1𝜃)})*#% from prior.

2. Simulate corresponding data {𝐱𝒊})*#% .

3. Learn a map from 𝐱 to 1𝜃.

Given any observed data 𝐱⋆:

1. Pass 𝐱⋆ to the trained neural 

network.

2. Get the estimated posterior.

𝐱 1𝜃 𝐱⋆ 𝜃⋆
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• Amortization refers to the ability of a conditional distribution approximation to condition on arbitrary 

instances of the conditioning variable, rather than being specialized to a particular instance.

• A plain definition: Training a deep neural networks as a surrogate model for a lengthy computational 

process.

• The amortization consists of the fact that we typically need to spend a lot of computations 

upfront to train the neural network, once it's trained it acts as an oracle that gives us the 

answer with a single forward pass.

Amortized Inference
𝑃(𝜃⋆|𝐱⋆)
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• Core idea: Allow models to efficiently make predictions on new data by leveraging patterns learned 

from past data.

From Amortized Inference to Meta-learning

Deep learning researchersStatisticians

Meta-learningAmortized inference

9



Meta-Learning over Sets 
Data set Predictions

training

test
… …

s

• Context set (black points): 

(𝐗, 𝐘) = { 𝐱!, 𝐲! , … , (𝐱", 𝐲")}

• Target set (red points): 

𝐗⋆ = (𝐱!⋆, … , 𝐱$⋆ )

• A set of context sets:

𝐗%, 𝐘% %&!
' = 𝐗!, 𝐘! , … , 𝐗', 𝐘'

• A set of target sets:

𝐗%⋆ %&!
' = {𝐗!⋆, … , 𝐗'⋆ }

• Task: build a single model to make instant 

predictions for 𝐘⋆ given any new context set and 

target set. 

• Applications: personalized medicine, 

recommendation systems…
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• A prediction map 𝜋 maps a context set and a set of target inputs to a distribution over the 

corresponding target outputs :

where 𝐫 = 𝑟( 𝐗, 𝐘 , 𝐗⋆) is a representation vector which parameterizes the distribution over 𝐘⋆.

Prediction Maps

π 𝐘⋆| 𝐗, 𝐘 , 𝐗⋆ = 𝑝(𝐘⋆|𝐫),
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Conditional Neural Processes (CNPs)1 are a class of meta-learning models.

• Leverage the concept of amortized inference to deal with diverse data efficiently.

• Provide well-calibrated uncertainty estimation.

Conditional Neural Processes

1 Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M. & Eslami, S. A. (2018, July). Conditional neural processes. In International 
conference on machine learning (pp. 1704-1713). PMLR. 12



Conditional Neural Processes

Components

• Encoder ( ): a shared neural network among all input-output pairs.

• Aggregator ( ): a sum or mean operator to ensure permutation invariance.

• Decoder (    ): a neural network which makes the prediction over the target outputs.

13
2 Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. Advances in neural information processing systems, 30.

Deep sets2



Conditional Neural Processes

Training

• Given closed-form Gaussian likelihood, we can optimize the parameters via 

maximum likelihood: 
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𝜃∗ = arg max
"∈!

𝔼. [𝑝(𝐘⋆|𝐫)]

𝜃∗ = arg max
"∈!

𝔼.[ M
𝐲⋆∈𝐘⋆

log𝒩(𝐲⋆; 𝜇𝐲⋆ , 𝜎𝐲⋆)]

CNP is a valid prediction map:

π 𝐘⋆| 𝐗, 𝐘 , 𝐗⋆ = ∏1*#
2 𝑝 𝑦1⋆ 𝒓1 ,

where each 𝑝(𝑦1⋆ |𝒓1) is an independent Gaussian. 



Dependent predictions

• Not all outputs are independent
Ø E.g., Predicting heat waves or floods requires modelling dependencies in 

temperature or precipitation over time and space.

• CNPs are factored models which do not produce correlated predictions.

15
Temperature is geographically coherent.  



Gaussian Neural Processes (GNPs)3

• Directly parameterize the mean the covariance over the output variables：
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CNP (left) makes independent predictions, GNP (right) makes dependent 
predictions and can be used to draw function samples which are coherent.

π 𝐘⋆| 𝐗, 𝐘 , 𝐗⋆ = 𝒩 𝐘⋆;𝐦, 𝐊 .

• 𝐦 and 𝐊 are directly parameterized by neural networks:

𝐦 = 𝑓1 𝐞, 𝐗⋆ , 𝐊)3 = 𝑘 𝑓456 𝐱)⋆, 𝐞 , 𝑓456 𝐱3⋆, 𝐞

3 Markou, S., Requeima, J., Bruinsma, W. P., Vaughan, A., & Turner, R. E. (2022). Practical conditional neural processes via tractable dependent predictions. arXiv
preprint arXiv:2203.08775.



Gaussian Neural Processes (GNPs)

• Directly parameterize the mean the covariance over the output variables：
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π 𝐘⋆| 𝐗, 𝐘 , 𝐗⋆ = 𝒩 𝐘⋆;𝐦, 𝐊 .

• 𝐦 and 𝐊 are directly parameterized by neural networks:

𝐦 = 𝑓1 𝐞, 𝐗⋆ , 𝐊)3 = 𝑘 𝑓456 𝐱)⋆, 𝐞 , 𝑓456 𝐱3⋆, 𝐞



Covariance
Linear Covariance

• The finite number of basis functions may limit its expressivity.
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𝐊)3 = 𝑓456 𝐱)⋆, 𝐞 7𝑓456 𝐱3⋆, 𝐞



Covariance
kvv Covariance

• 𝑘 is the Exponentiated Quadratic (EQ) covariance with unit length-scale and 𝑓6 is a scalar-
output neural network which modulate the magnitude of the covariance.

19

𝐊)3 = 𝑘 𝑓456 𝐱)⋆, 𝐞 , 𝑓456 𝐱3⋆, 𝐞 𝑓6 𝐱)⋆, 𝐞 𝑓6 𝐱3⋆, 𝐞



Experiments
Temperature modeling

20

• In climate modelling, future projections are obtained by simulating the atmospheric equations of 

motion on a spatial-temporal grid.

• computational constraints typically limit spatial resolution to around 100-200km, which is 

insufficient to resolve extreme events and produce local projections.



Autoregressive Conditional Neural Processes (AR-CNPs)4

• Define a joint predictive distribution autoregressively, leveraging the chain rule of probability.

• AR-CNPs feed earlier output predictions back into the model autoregressively to predict new points.

21
4 Bruinsma, W. P., Markou, S., Requiema, J., Foong, A. Y., Andersson, T. R., Vaughan, A., ... & Turner, R. E. (2023). Autoregressive conditional neural processes. 
arXiv preprint arXiv:2303.14468.



Autoregressive Conditional Neural Processes (AR-CNPs)

Advantages:

• Correlated and non-Gaussian predictions.

• No modifications to model or training procedure.

Disadvantages:

• Predictions depend on number and order of data (no longer consistent).

• Requires multiple forward passes of CNP.
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Other Conditional Neural Processes 

• Attentive CNPs (ACNPs)5: Add attention mechanism to CNPs.

Ø Task: Make the prediction for 𝐱⋆ = 1.1. 

Ø Our context set includes various observed points, one of which is very close to our point of interest 𝐱 = 1.0.

Ø In ACNPs, not all context points contribute equally to the prediction.

Ø The model 'pays more attention' to 𝐱 = 1.0, as it's closer to our point of interest.

• Transformer CNPs (TCNPs)6: Replace the linear layers with Transformer layers.

23
5 Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., ... & Teh, Y. W. (2019). Attentive neural processes. arXiv preprint arXiv:1901.05761.
6Nguyen, T., & Grover, A. (2022). Transformer neural processes: Uncertainty-aware meta learning via sequence modeling. arXiv preprint arXiv:2207.04179.



Uses of CNPs

1. Sets of datasets with

• Small size

• Irregular and missing data

2. Continual learning (naturally supports incremental updates)

3. Sim2Real (train on data from simulator; deploy on real data)

24
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Equivariances

𝜏

• Definition:

𝑓 𝜏𝐱 = 𝜏𝑓(𝐱)

• Spatial-temporal modeling, image 

recognition…

Data Predictions
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Equivariances

• Neural network can learn equivariance from the data, but inefficient.

27

0.765
0.482

…
0.215
1.645

Dog

0.525
0.278

…
1.940
0.675

Cat?



Equivariances

Convolutional neural network 
vs 

Deep neural network

28

• How about directly build equivariances into NN?



Equivariances in Our Life

29

Molecular sciences Robotics



• A prediction map 𝜋 with representation function 𝑟 is 𝒯-equivariant if and only if for all 𝜏 ∈ 𝒯:

Equivariance for a prediction map

30

𝑟 𝐗, 𝐘 , 𝐗⋆ = 𝑟 𝜏𝐗, 𝐘 , 𝜏𝐗⋆ .



• CNPs do not model equivariances.

Equivariance in CNPs

31
training evaluation



Equivariance in CNPs

Previous solution:

Convolutional CNPs 2

• Leverage a convolutional deep sets to induce translational-equivariant embeddings.

• Can only apply to very low dimensional equivariant inputs.

Ø Building a grid is infeasible in high dimension.

7 Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J., Dubois, Y., & Turner, R. E. (2019, September). Convolutional Conditional Neural Processes. 
In International Conference on Learning Representations.
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Equivariance in CNPs

Convolutional CNPs 

• Can only apply to very low dimensional equivariant inputs.

Ø Convolutional operations in high dimension is not well-supported.

33

Conv2d: Conv4d:



Equivariance in CNPs

We propose Relational CNPs (RCNPs) 4, a new family of CNPs, 
to efficiently scale different equivariances to any input dimensions.

Our contribution: 

34

8 Huang, D., Haussmann, M., Remes, U., John, S. T., Clarté, G., Luck, K. S., ... & Acerbi, L. (2023). Practical Equivariances via Relational Conditional 
Neural Processes. Neurips 2023.



• We process data through a comparison function 𝑔 𝐱%, 𝐱1⋆ .

Remove all input information that does not matter to impose the desired equivariance.

Relational Encoding

We only encode relative information of the data, ensuring desired 

equivariances while discarding non-essential absolute information.
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• Translational equivariance → 𝑔89:: 𝐱%, 𝐱1⋆ = 𝐱1⋆ - 𝐱%

• Isotropy (equivariance to rigid transformations) → 𝑔89;< 𝐱%, 𝐱1⋆ = 𝐱1⋆ − 𝐱% 𝟐

Relational Encoding

36



Traditional CNP

Simple RCNP

37

Simple RCNP



Simple RCNP Architecture

38

We shift the 𝐗⋆ from “input of the decoder” to “input of the comparison function”. 

If we want to keep the values of the prediction map unchanged (according to the definition of 
equivariance), we need to ensure that the neural network never receives absolute information.



Simple RCNP is not context-preserving for 𝑔!"#$
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𝐱>

𝐱#

𝐱⋆

Relative information between 𝐱# and 𝐱⋆: 𝑔89;<(𝐱#, 𝐱⋆) = 2

Relative information between 𝐱> and 𝐱⋆: 𝑔89;<(𝐱>, 𝐱⋆) = 2

But 𝐱𝟏 ≠ 𝐱𝟐!



Simple RCNP is not context-preserving for 𝑔!"#$
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𝐱>

𝐱#

𝐱⋆

We should also encode the relative information between 𝐱# and 𝐱>!



Full RCNP is context-preserving for 𝑔!"#$

41

• The full relational encoding of a target point 𝐱1⋆ respect to the context set 𝐗, 𝐘 :

𝐑 is the relational matrix, comparing all pairs of the context set. 

• The simple relational encoding is a diagonal version of the full relational encoding:



• Synthetic regression

• Bayesian optimization

• Lotka–Volterra model

• Reaction-diffusion model

• Image completion 

Experiments
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• RCNPs vs CNP models across different synthetic regression tasks.

Experiments
Synthetic regression
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Experiments
Synthetic regression

training evaluation

Interpolation (INT) 

Out-of-input-distribution (OOID) 
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• INT: The CNP underfits the context data, while the RCNP yields better predictions.

• OOID: The CNP fails to make prediction; whereas the RCNP generalizes by means of 

translational equivariance.

Experiments
Synthetic regression
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• The OOID results show significant improvement of our models, as they can leverage translational 

equivariance to generalize outside the training range.

• ConvCNPs excel in low dimensions, but RCNPs are often competitive and are applicable for 𝑑? ≫ 2.

Experiments
Synthetic regression
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Experiments
Bayesian optimization

47

The goal of Bayesian optimization (BO) is to find the global optimum 𝑥∗ of 𝑓 under a limited 

budget, defined as:

𝑥∗ = arg min
?∈𝒳

𝑓(𝑥)

BO is equipped with two components:
• A surrogate model for 𝑓.

• An acquisition function 𝛼, which is based on the surrogate.

During optimization, we conduct the following operations iteratively:

• Query the next point by maximizing 𝛼.

• Augment the dataset with the newly added sample.

• Update the surrogate model with the new dataset.



• We train CNP models with synthetic data.

• The trained CNP models are used as surrogate models to minimize the Hartmann function.

Experiments
Bayesian optimization

48

• Query the next point by maximizing 𝛼.

• Augment the dataset with the newly added sample.

• Update the surrogate model with the new dataset.

• Query the next point by maximizing 𝛼.

• Augment the context set with the newly added sample.

• Update the surrogate model with the new dataset.



• CNPs and GNPs fail at the task.

• RCNPs can come close to the performance of a Gaussian Process.

Experiments
Bayesian optimization

49



Experiments
Bayesian optimization
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• Query the next point by maximizing 𝛼.

• Augment the context set with the newly added sample.

• Update the surrogate model with the new dataset.

End-to-End Bayesian Optimization9

9 Maraval, A., Zimmer, M., Grosnit, A., & Ammar, H. B. (2023). End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes. arXiv preprint 
arXiv:2305.15930.



Limitations
• The RCNP models have more expensive cost for training and deployment than basic CNPs.

- We need to calculate the relative information for 𝑀 test points with respect to 𝑁 context points.

- CNPs: 𝑂(𝑀 + 𝑁), Simple RCNP: 𝑂(𝑀𝑁), Full RCNP: 𝑂 𝑀𝑁( .

Takeaways
• Exploiting equivariances intrinsic to a problem can significantly improve performance.

• RCNPs provide a simple and effective way to implement equivariances into the CNP model family.
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Paper: https://arxiv.org/abs/2306.10915.

Code implementation: https://github.com/acerbilab/relational-neural-processes.

FCAI Team Amortized Inference:

CodePaper

Thanks!

https://arxiv.org/abs/2306.10915
https://github.com/acerbilab/relational-neural-processes

